

Note

TiCl₄ Promoted synthesis of benzimidazole derivatives

Rahul R Nagawade ^a & Devanand B Shinde ^b*

^a Wockhardt Research Centre, Aurangabad 431 210, India

^b Department of Chemical Technology,
Dr. Babasaheb Ambedkar

Marathwada University, Aurangabad 431 004, India
E-mail: devanandshinde@yahoo.com

Received 12 July 2005; accepted (revised) 31 May 2006

Differently substituted benzimidazoles have been synthesised in very good yields in solvent-free conditions from *o*-phenylenediamine and aldehydes in the presence of TiCl₄ as a catalyst. The method is applicable to aromatic, unsaturated and aliphatic aldehydes and to substituted *o*-phenylenediamines without significant differences.

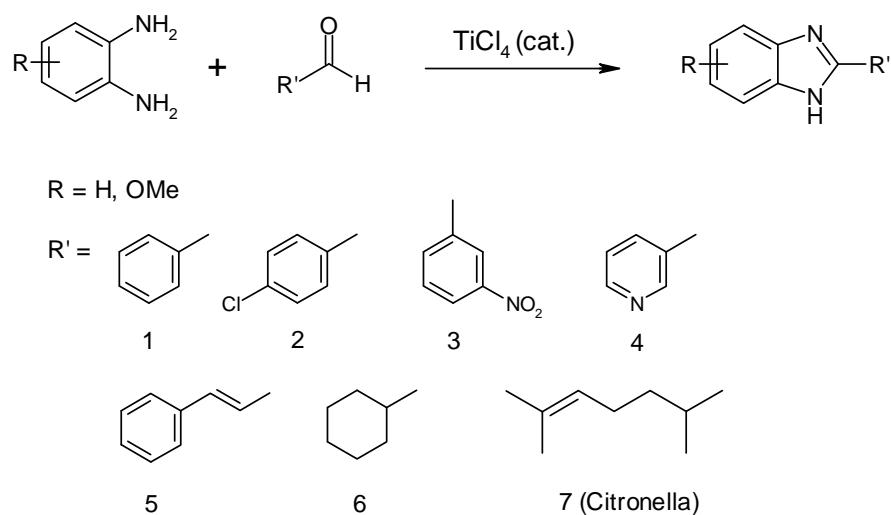
Keywords: TiCl₄, aldehydes, benzimidazoles, solvent-free reactions, drugs

IPC Code: Int Cl.⁸ C07D

Benzimidazole structures are classified under several classes of drugs¹, based on the possible substitution at different positions of the benzimidazole nucleus. Introduction of a small substituent into the 2-and 5-position is characteristic for benzimidazole anti-helmentics; alternatively, bulky 2-substituents characterize drugs used in the treatment of peptic ulcer and are sometimes referred as proton pump inhibitors; bulky 1-and 2-substituents are found in H1-anti-histaminics. All these compounds contain the benzimidazole skeleton and hence it has been assumed that this skeleton is necessary for the therapeutic effect.

Methods of benzimidazole synthesis include the condensation of *o*-aryldiamines and aldehyde in refluxing nitrobenzene^{2,3}, the condensation of *o*-aryldiamines with carboxylic acids or their derivatives in the presence of strong acids such as polyphosphoric acid⁴ or mineral acids⁵ and the thermal or acid promoted cyclization of *N*-(*N*-arylbenzimidoyl)-1,4-benzoquinoneimines⁶. Direct condensation of *o*-aryl di-amines and aldehydes is not a good synthetic reaction, as it is well known to yield a complex mixture, being 1,2-disubstituted benzimidazoles, the bis anil and dihydrobenzimidazoles as the main side products⁷. In this case, however, the

addition of transition metal, namely copper (II) acetate⁸, mercury oxide⁹ or lead tetracetate¹⁰ allow a partial selective synthesis of benzimidazoles. Unfortunately, many of these process suffer some limitations, such as drastic reaction conditions, low yields, tedious work up procedures and co-occurrence of several side reactions.


Titanium(IV) chloride is moderately strong Lewis acid with extreme wide applications such as in conversion of ketones to *N*-alkylimines, in Aldol condensation of aryl ketones with aryl aldehyde, in Michael addition of silyl enol ethers to α,β -enones, conjugate allylation of α,β -enones etc. However, there are no examples of the use of titanium(IV) chloride as a catalyst for the preparation of benzimidazoles.

Herein, we wish to disclose a novel protocol for the rapid synthesis of a variety of biologically significant benzimidazoles using a catalytic amount of TiCl₄ under extremely mild solvent-free conditions (**Scheme I**). The reaction was carried out in neat at room temperature for 30 min, using *o*-phenylenediamine (1 mmole) and aldehyde (1.1 mmole) in the presence of TiCl₄ (0.1 mmole). The results are summarized in **Table I**.

As shown in **Table I**, aromatic, aliphatic and α,β -unsaturated aldehydes and substituted *o*-phenylenediamine react without any significant difference to give the corresponding benzimidazoles in good yields. Best results were obtained using 0.1 equivalents of TiCl₄, lower loading resulted in lower yields, while higher loading did not increase product yields significantly. The scope and generality of this procedure is illustrated with respect to various *o*-phenylenediamines and a wide range of aldehydes and the results are presented in **Table I**. This method offers several advantages such as high conversions, shorter reaction times, cleaner reaction profiles, solvent-free conditions and simple experimental and work-up procedures.

Experimental Section

Melting points are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a Varian Gemini 200 MHz spectrometer. Chemical shifts are reported in δ units (ppm) relative to TMS as internal standard. Electron spray ionization mass spectra (ES-MS) were

Scheme I**Table I**—Characterization data of compounds

Diamine	Aldehyde	Product	Yield (%)	m.p. (°C)	
				Reported	Found
			90	291 ¹¹	289-91
			89	294 ¹¹	291-93
			87	308 ¹¹	309-10
			93	248 ¹²	245-48
			91	201 ¹³	199-01
			93	282 ¹³	282-83
	Citronella		82	94 ¹⁴	92-94
			88	219 ¹³	220-21

recorded on a Water-Micromass Quattro-II spectrometer. IR spectra were recorded on a Varian spectrometer. All the reagents used were of AR grade and were used without further purification. Column chromatography employed silica gel of 60-120 mesh.

General Procedure. A mixture of *o*-phenylenediamine (1 mmole) and aldehyde (1.1 mmole) was well stirred with TiCl_4 (0.1 mmole) at room temperature for 30 min. To this reaction mixture, CH_2Cl_2 (25 mL) was added and washed with water and then with brine. The organic phase was separated, dried (Na_2SO_4) and concentrated *in vacuo* to get the crude compound. The crude compound was purified by silica gel column chromatography using CH_2Cl_2 – MeOH (99:1) as eluent.

2-Phenyl-1*H*-benzimidazole 1: mp 289-91°C; IR (KBr) : 3046, 1444, 1410, 1275, 970, 745 cm^{-1} ; Mass spectrum (ES/MS) : m/z 193 (M-H, 100 %); ^1H NMR spectrum (200 MHz, $\text{DMSO}-d_6$): δ 12.7 s (1H, NH), 7.95 m (2H), 7.25-7.35 m (5H), 7.05 m (2H); ^{13}C NMR (50 MHz, $\text{DMSO}-d_6$): δ 111.1, 118.6, 121.9, 126.2, 128.6, 129.5, 130.0, 134.8, 143.5, 151.0.

2-(4-Chlorophenyl)-1*H*-benzimidazole 2: m.p. 291-93°C; IR (KBr) : 3041, 1450, 1402, 1280, 965, 750 cm^{-1} ; Mass spectrum (ES/MS) : m/z 227 (M-H, 100 %); ^1H NMR spectrum (200 MHz, $\text{DMSO}-d_6$): δ 12.5 s (1H, NH), 8.20 d (2H), 7.6 d (2H), 7.30 m (2H), 7.10 m (2H); ^{13}C NMR (50 MHz, $\text{DMSO}-d_6$): δ 115.4, 123.2, 128.6, 128.9, 129.4, 134.3, 138.9, 152.9.

2-(3-Nitrophenyl)-1*H*-benzimidazole 3: m.p. 309-310°C; IR (KBr) : 3063, 1523, 1444, 1357, 973, 746 cm^{-1} ; Mass spectrum (ES/MS) : m/z 238 (M-H, 100 %); ^1H NMR spectrum (200 MHz, $\text{DMSO}-d_6$): δ 12.9 s (1H, NH), 8.90 s (1H), 8.50 d (1H), 8.10 d (1H), 7.70 t (1H), 7.50 m (2H), 7.2 m (2H); ^{13}C NMR (50 MHz, $\text{DMSO}-d_6$): δ 114.3, 121.2, 122.1, 123.2, 130.1, 131.6, 133.6, 138.9, 148.9, 152.7.

2-Pyridin-3-yl-1*H*-benzimidazole 4: m.p. 245-48°C; IR (KBr) : 3068, 1449, 1402, 1280, 746 cm^{-1} ; Mass spectrum (ES/MS) : m/z 194 (M-H, 100 %); ^1H NMR spectrum (200 MHz, CD_3OD): δ 13.05 s (1H, NH), 9.35 d (1H), 8.75 dd (1H), 8.60 m (1H), 7.70 m (3H), 7.40 m (2H); ^{13}C NMR (50 MHz, CD_3OD): δ 112.1, 119.2, 121.3, 121.7, 123.1, 124.5, 134.9, 137.3, 143.8, 148.5, 149.2, 150.7.

Acknowledgement

The authors are thankful to The Head, Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, for providing laboratory facility. One of the author (DBS) thanks UGC, New Delhi for financial support.

References

- 1 Velik J, Baliharova V, Fink-Gremmels J, Bull S, Lamka J & Skalova L, *Res Vet Sci*, 76, **2004**, 95.
- 2 Yadagiri B & Lown J W, *Synth Commun*, 20, **1990**, 955.
- 3 Sun Q & Yan B, *Bioorg Med Chem Lett*, 8, **1998**, 361.
- 4 Preston P N, *Benzimidazoles and Congeneric Tricyclic Compounds*, In *The Chemistry of Heterocyclic Compounds*, Part 1, Vol. 40; edited by Weissberger & Taylor (Wiley: New York), **1981**, p. 6-60.
- 5 Grimmett M R, *Imidazoles and their Benzo Derivatives*, In *Comprehensive Heterocyclic Chemistry*, Vol. 5; edited by Katritzky & Rees, (Pergamon: Oxford), **1984**, p. 457-487.
- 6 Benincori T & Sannicolo F, *J Heterocycl Chem*, 25, **1988**, 1029.
- 7 Smith J G & Ho I, *Tetrahedron Lett*, 38, **1971**, 3541.
- 8 Weidenhagen R, *Ber*, 69, **1936**, 2263.
- 9 Jakobson P, Jannicke M & Meyer F, *Ber*, 29, **1896**, 2682.
- 10 Stevens F F & Bower J D, *J Chem Soc*, **1949**, 2971.
- 11 Abdou O A, Cyril P, Khaledur S M & Winston O L, *J Heterocycl Chem*, 25, **1988**, 403.
- 12 Myung H J, Jung M P, Ihl-Young C L & Miya A, *J Heterocycl Chem*, 40, **2003**, 37.
- 13 Cui Y, Tang X B, Shao C X, Li J T & Sun W H, *Chi J Chem*, 23, **2005**, 589.
- 14 Massimo C, Francesco E, Francesca M, Ornelio R & Sara T, *Synlett*, **2004**, 1832.